Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.548
Filtrar
1.
Cells ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607049

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Assuntos
Dictyostelium , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Dictyostelium/metabolismo , Canais de Cátion TRPP/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Canais de Cálcio/metabolismo
2.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561249

RESUMO

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Rim/metabolismo , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/farmacologia , Equilíbrio Hidroeletrolítico
4.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534333

RESUMO

The progression of autosomal dominant polycystic kidney disease (ADPKD), an inherited kidney disease, is associated with renal interstitial inflammation and fibrosis. CD74 has been known not only as a receptor of macrophage migration inhibitory factor (MIF) it can also have MIF independent functions. In this study, we report unknown roles and function of CD74 in ADPKD. We show that knockout of CD74 delays cyst growth in Pkd1 mutant kidneys. Knockout and knockdown of CD74 (1) normalize PKD associated signaling pathways, including ERK, mTOR and Rb to decrease Pkd1 mutant renal epithelial cell proliferation, (2) decrease the activation of NF-κB and the expression of MCP-1 and TNF-alpha (TNF-α) which decreases the recruitment of macrophages in Pkd1 mutant kidneys, and (3) decrease renal fibrosis in Pkd1 mutant kidneys. We show for the first time that CD74 functions as a transcriptional factor to regulate the expression of fibrotic markers, including collagen I (Col I), fibronectin, and α-smooth muscle actin (α-SMA), through binding on their promoters. Interestingly, CD74 also regulates the transcription of MIF to form a positive feedback loop in that MIF binds with its receptor CD74 to regulate the activity of intracellular signaling pathways and CD74 increases the expression of MIF in ADPKD kidneys during cyst progression. We further show that knockout of MIF and targeting MIF with its inhibitor ISO-1 not only delay cyst growth but also ameliorate renal fibrosis through blocking the activation of renal fibroblasts and CD74 mediated the activation of TGF-ß-Smad3 signaling, supporting the idea that CD74 is a key and novel upstream regulator of cyst growth and interstitial fibrosis. Thus, targeting MIF-CD74 axis is a novel therapeutic strategy for ADPKD treatment.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fator de Necrose Tumoral alfa , Fibrose
5.
Medicine (Baltimore) ; 103(13): e27853, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552045

RESUMO

BACKGROUND: PKD1, which has a relatively high mutation rate, is highly polymorphic, and the role of PKD1 is incompletely defined. In the current study, in order to determine the molecular etiology of a family with autosomal dominant polycystic kidney disease, the pathogenicity of an frameshift mutation in the PKD1 gene, c.9484delC, was evaluated. METHODS: The family clinical data were collected. Whole exome sequencing analysis determined the level of this mutation in the proband's PKD1, and Sanger sequencing and bioinformatics analysis were performed. SIFT, Polyphen2, and MutationTaster were used to evaluate the conservation of the gene and pathogenicity of the identified mutations. SWISS-MODEL was used to predict and map the protein structure of PKD1 and mutant neonate proteins. RESULTS: A novel c.9484delC (p.Arg3162Alafs*154) mutation of the PKD1 gene was identified by whole exome sequencing in the proband, which was confirmed by Sanger sequencing in his sister (II7). The same mutation was not detected in the healthy pedigree members. Random screening of 100 normal and end-stage renal disease patients did not identify the c.9484delC mutation. Bioinformatics analysis suggested that the mutation caused the 3162 nd amino acid substitution of arginine by alanine and a shift in the termination codon. As a result, the protein sequence was shortened from 4302 amino acids to 3314 amino acids, the protein structure was greatly changed, and the PLAT/LH2 domain was destroyed. Clustal analysis indicated that the altered amino acids were highly conserved in mammals. CONCLUSION: A novel mutation in the PKD1 gene has been identified in an affected Chinese family. The mutation is probably responsible for a range of clinical manifestations for which reliable prenatal diagnosis and genetic counseling may be provided.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Recém-Nascido , Alanina , China , Proteínas Mutantes , Mutação , Linhagem , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética
6.
J Med Chem ; 67(7): 5935-5944, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38509003

RESUMO

The dysregulated intracellular cAMP in the kidneys drives cystogenesis and progression in autosomal dominant polycystic kidney disease (ADPKD). Mounting evidence supports that vasopressin V2 receptor (V2R) antagonism effectively reduces cAMP levels, validating this receptor as a therapeutic target. Tolvaptan, an FDA-approved V2R antagonist, shows limitations in its clinical efficacy for ADPKD treatment. Therefore, the pursuit of better-in-class V2R antagonists with an improved efficacy remains pressing. Herein, we synthesized a set of peptide V2R antagonists. Peptide 33 exhibited a high binding affinity for the V2R (Ki = 6.1 ± 1.5 nM) and an extended residence time of 20 ± 1 min, 2-fold that of tolvaptan. This prolonged interaction translated into sustained suppression of cAMP production in washout experiments. Furthermore, peptide 33 exhibited improved efficacies over tolvaptan in both ex vivo and in vivo models of ADPKD, underscoring its potential as a promising lead compound for the treatment of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/uso terapêutico , Tolvaptan/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Rim/metabolismo , Vasopressinas/metabolismo , Receptores de Vasopressinas/metabolismo
7.
Nephrology (Carlton) ; 29(5): 245-258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462235

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney disease (ESKD) worldwide. Guidelines for the diagnosis and management of ADPKD in Taiwan remains unavailable. In this consensus statement, we summarize updated information on clinical features of international and domestic patients with ADPKD, followed by suggestions for optimal diagnosis and care in Taiwan. Specifically, counselling for at-risk minors and reproductive issues can be important, including ethical dilemmas surrounding prenatal diagnosis and pre-implantation genetic diagnosis. Studies reveal that ADPKD typically remains asymptomatic until the fourth decade of life, with symptoms resulting from cystic expansion with visceral compression, or rupture. The diagnosis can be made based on a detailed family history, followed by imaging studies (ultrasound, computed tomography, or magnetic resonance imaging). Genetic testing is reserved for atypical cases mostly. Common tools for prognosis prediction include total kidney volume, Mayo classification and PROPKD/genetic score. Screening and management of complications such as hypertension, proteinuria, urological infections, intracranial aneurysms, are also crucial for improving outcome. We suggest that the optimal management strategies of patients with ADPKD include general medical care, dietary recommendations and ADPKD-specific treatments. Key points include rigorous blood pressure control, dietary sodium restriction and Tolvaptan use, whereas the evidence for somatostatin analogues and mammalian target of rapamycin (mTOR) inhibitors remains limited. In summary, we outline an individualized care plan emphasizing careful monitoring of disease progression and highlight the need for shared decision-making among these patients.


Assuntos
Falência Renal Crônica , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/terapia , Rim Policístico Autossômico Dominante/complicações , Taiwan/epidemiologia , Tolvaptan , Rim
8.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474184

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a PKD1 or PKD2 gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated PKD1 mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/metabolismo , Mutação , Rim/metabolismo , Cistos/metabolismo , Instabilidade Cromossômica
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473800

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.


Assuntos
Hipertensão , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/complicações , Qualidade de Vida , Rim , Hipertensão/etiologia , Fígado
10.
Exp Clin Transplant ; 22(2): 156-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38511986

RESUMO

We report a case of laparoscopic nephrectomy via the retroperitoneal approach for autosomal dominant polycystic kidney disease after renal transplant. A 54-year-old male patient with end-stage renal failure because of autosomal dominant polycystic kidney disease underwent a living donor renal transplant and right nephrectomy via open surgery through a median abdominal incision 5 years previously. However, the left kidney gradually became enlarged. We performed laparoscopic left nephrectomy via the retroperitoneal approach. After dissecting the renal vessels, we performed cyst puncture and aspiration to decrease the kidney volume. The patient's symptoms improved after operation. Laparoscopic nephrectomy for enlarged kidneys with multiple cysts can be safely performed, and the retroperitoneal approach can be preferred if the patient has a history of abdominal surgery or an enlarged polycystic kidney.


Assuntos
Transplante de Rim , Laparoscopia , Rim Policístico Autossômico Dominante , Masculino , Humanos , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Transplante de Rim/efeitos adversos , Rim , Nefrectomia , Estudos Retrospectivos
11.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474131

RESUMO

Mutations of PKD1 coding for polycystin-1 (PC1) account for most cases of autosomal-dominant polycystic kidney disease (ADPKD). The extracellular region of PC1 contains many evolutionarily conserved domains for ligand interactions. Among these are the leucine-rich repeats (LRRs) in the far N-terminus of PC1. Using zebrafish (Danio rerio) as an in vivo model system, we explored the role of LRRs in the function of PC1. Zebrafish expresses two human PKD1 paralogs, pkd1a and pkd1b. Knockdown of both genes in zebrafish by morpholino antisense oligonucleotides produced phenotypes of dorsal-axis curvature and pronephric cyst formation. We found that overexpression of LRRs suppressed both phenotypes in pkd1-morphant zebrafish. Purified recombinant LRR domain inhibited proliferation of HEK cells in culture and interacted with the heterotrimeric basement membrane protein laminin-511 (α5ß1γ1) in vitro. Mutations of amino acid residues in LRRs structurally predicted to bind laminin-511 disrupted LRR-laminin interaction in vitro and neutralized the ability of LRRs to inhibit cell proliferation and cystogenesis. Our data support the hypothesis that the extracellular region of PC1 plays a role in modulating PC1 interaction with the extracellular matrix and contributes to cystogenesis of PC1 deficiency.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Rim Policístico Autossômico Dominante/genética , Peixe-Zebra/genética , Leucina/metabolismo , Canais de Cátion TRPP/metabolismo , Doenças Renais Policísticas/metabolismo , Laminina/metabolismo , Rim/metabolismo
12.
Nat Commun ; 15(1): 2548, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514631

RESUMO

The importance of P-stereogenic heterocycles has been widely recognized with their extensive use as privileged chiral ligands and bioactive compounds. The catalytic asymmetric synthesis of P-stereogenic phosphindane derivatives, however, remains a challenging task. Herein, we report a catalytic kinetic resolution of phosphindole oxides via rhodium-catalyzed diastereo- and enantioselective conjugate addition to access enantiopure P-stereogenic phosphindane and phosphindole derivatives. This kinetic resolution method features high efficiency (s factor up to >1057), excellent stereoselectivities (all >20:1 dr, up to >99% ee), and a broad substrate scope. The obtained chiral phosphindane oxides exhibit promising therapeutic efficacy in autosomal dominant polycystic kidney disease (ADPKD), and compound 3az is found to significantly inhibit renal cyst growth both in vitro and in vivo, thus ushering in a promising scaffold for ADPKD drug discovery. This study will not only advance efforts towards the asymmetric synthesis of challenging P-stereogenic heterocycles, but also surely inspire further development of P-stereogenic entities for bioactive small-molecule discovery.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Catálise , Descoberta de Drogas , Cinética , Óxidos/farmacologia
13.
Kidney Int ; 105(4): 661-663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519230

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) has long been considered a genetic renal disorder, but emerging evidence suggests that the immune microenvironment within the kidney plays a pivotal role in disease progression and severity. In recent years, the previously obscure cytokine interleukin-37 has proved a strong inhibitor of innate immunity in multiple disease models. However, its role in ADPKD has not received scrutiny. In a provocative study published in the current issue, Zylberberg et al. show that interleukin-37 activates interferon signaling in renal macrophages, which inhibits ADPKD initiation. This finding identifies interleukin-37 as a potential viable immunomodulatory therapy for ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim , Citocinas , Progressão da Doença , Interleucinas
14.
Proc Natl Acad Sci U S A ; 121(12): e2316230121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483987

RESUMO

Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.


Assuntos
Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Canais de Cátion TRPP/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Canais Iônicos
16.
Clin Transplant ; 38(3): e15216, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38450843

RESUMO

BACKGROUND: This study investigated whether nature of primary renal disease affects clinical outcomes after renal transplantation at a single center in the United Kingdom. METHODS: This was a retrospective cohort study of 961 renal transplant recipients followed up at a large renal center from 2000 to 2020. Separation of diseases responsible for end-stage kidney disease included glomerulonephritis, diabetic kidney disease, hypertensive nephropathy, autosomal dominant polycystic kidney disease, unknown cause, other causes and chronic pyelonephritis. Outcome data included graft loss, cardiovascular events, malignancy, post-transplant diabetes mellitus and death, analyzed according to primary disease type. RESULTS: The mean age at transplantation was 47.3 years. During a mean follow-up of 7.6 years, 18% of the overall cohort died corresponding to an annualised mortality rate of 2.3%. Death with a functioning graft occurred at a rate of 2.1% per annum, with the highest incidence observed in in patients with diabetic kidney disease (4.1%/year). Post-transplant cardiovascular events occurred in 21% of recipients (2.8% per year), again highest in recipients with diabetic kidney disease (5.1%/year) and hypertensive nephropathy (4.5%/year). Post-transplant diabetes mellitus manifested in 19% of the cohort at an annualized rate of2.1% while cancer incidence stood at 9% with an annualized rate of 1.1% . Graft loss occurred in 6.8% of recipients at the rate of1.2% per year with chronic allograft injury, acute rejection and recurrent glomerulonephritis being the predominant causative factors. Median + IQR dialysis-free survival of the whole cohort was 16.2 (9.9 - > 20) years, being shortest for diabetic kidney disease (11.0 years) and greatest for autosomal dominant polycystic kidney disease (18.2 years) .The collective mean decline in eGFR over time was -1.14ml/min/year. Recipients with Pre-transplant diabetic kidney disease exhibited the fastest rate of decline(-2.1ml/min/year) a statistically significant difference in comparison to the other native kidney diseases with Autosomal dominant polycystic kidney disease exhibiting the lowest rate of decline(-0.05ml/min/year) CONCLUSION: Primary renal disease can influence the outcome after renal transplantation, with patients with prior diabetic kidney disease having the poorest outcome in terms of dialysis-free survival and loss of transplant function. Autosomal polycystic kidney disease, other cause and unknown cause had the best outcomes compared to other primary renal disease groups.


Assuntos
Nefropatias Diabéticas , Glomerulonefrite , Hipertensão Renal , Transplante de Rim , Nefrite , Rim Policístico Autossômico Dominante , Humanos , Pessoa de Meia-Idade , Transplante de Rim/efeitos adversos , Estudos Retrospectivos
18.
Comput Med Imaging Graph ; 113: 102349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330635

RESUMO

Autosomal-dominant polycystic kidney disease is a prevalent genetic disorder characterized by the development of renal cysts, leading to kidney enlargement and renal failure. Accurate measurement of total kidney volume through polycystic kidney segmentation is crucial to assess disease severity, predict progression and evaluate treatment effects. Traditional manual segmentation suffers from intra- and inter-expert variability, prompting the exploration of automated approaches. In recent years, convolutional neural networks have been employed for polycystic kidney segmentation from magnetic resonance images. However, the use of Transformer-based models, which have shown remarkable performance in a wide range of computer vision and medical image analysis tasks, remains unexplored in this area. With their self-attention mechanism, Transformers excel in capturing global context information, which is crucial for accurate organ delineations. In this paper, we evaluate and compare various convolutional-based, Transformers-based, and hybrid convolutional/Transformers-based networks for polycystic kidney segmentation. Additionally, we propose a dual-task learning scheme, where a common feature extractor is followed by per-kidney decoders, towards better generalizability and efficiency. We extensively evaluate various architectures and learning schemes on a heterogeneous magnetic resonance imaging dataset collected from 112 patients with polycystic kidney disease. Our results highlight the effectiveness of Transformer-based models for polycystic kidney segmentation and the relevancy of exploiting dual-task learning to improve segmentation accuracy and mitigate data scarcity issues. A promising ability in accurately delineating polycystic kidneys is especially shown in the presence of heterogeneous cyst distributions and adjacent cyst-containing organs. This work contribute to the advancement of reliable delineation methods in nephrology, paving the way for a broad spectrum of clinical applications.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Rim/diagnóstico por imagem , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim Policístico Autossômico Dominante/patologia , Doenças Renais Policísticas/patologia , Imageamento por Ressonância Magnética/métodos , Cistos/patologia
19.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385746

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure, yet therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via "centrosome clustering," a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with 2 inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, decreased interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Humanos , Camundongos , Animais , Rim Policístico Autossômico Dominante/patologia , Proliferação de Células , Rim/patologia , Centrossomo/metabolismo , Fibrose , Cistos/metabolismo , Cistos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...